Настоящее: сферы применения 3D-печати
Медицина
Одно из самых быстроразвивающихся направлений 3D-печати – медицина. В 2011 году произошел триумф в регенеративной медицине: принтер, заправленный биогелем со стволовыми клетками, «напечатал» за 3 часа человеческую почку. Хотя до трансплантации органов ещё далеко, ученые уже сейчас разрабатывают технологии для пересадки выращенных с помощью 3D-печати кровеносных сосудов, органов брюшной полости, кожи.
Сегодня во всём мире, в том числе и в России, успешно имплантируются напечатанные на 3D-принтере элементы человеческого скелета – кости, суставы, зубы. В НИИ травматологии и ортопедии Санкт-Петербурга благополучно применяют эндопротезирование утраченных конечностей и суставов, а в Новосибирском НИИ им. Н.Я. Цивьяна проводят операции по замещению черепных костей с помощью аддитивных технологий, возвращая к полноценной жизни детей и взрослых.
Строительство
Строительство с помощью 3D-печати составляет серьёзную конкуренцию традиционным подходам. Объединенные Арабские Эмираты, Тайланд, Китай и Россия уже сегодня используют современные мобильные принтеры для печати домов прямо на месте их расположения.
Метод печати тот же, что и в других сферах применения, – послойное экструдирование (производство путем продавливания вязкого материала через формующие отверстия). В качестве материала используются цемент, строительный мусор, бывшие в употреблении стройматериалы, стекловолокно и др. Технология работает по принципу строительного крана, возводящего стены из смеси бетона и связующих материалов.
Если говорить о рациональности данного метода строительства, то стоимость материалов и время работы в разы ниже, а отсутствие прорабов и бригад сокращает финансовые затраты на человеческий труд. Более того, данная технология обеспечивает жильем людей с крайне низким уровнем дохода.
Трудно переоценить перспективы быстрого возведения экономичного жилья оригинальных архитектурных форм как в перенаселенных городах, так и в труднодоступных уголках планеты.
Быт
Принтеры с технологией 3D-печати постепенно осваивают сферы производства продуктов питания, одежды, обуви, уникальных сувениров, игрушек, мебели – всего того, что используют люди в повседневной жизни.
Для печати бытовой продукции широкого спектра человеку понадобится лишь принтер и различные материалы к нему.
Пищевой 3D-принтер заправляется картриджами с ингредиентами и готовит самые изысканные многокомпонентные блюда по рецептам, хранящимся на карте памяти.
Одежда и обувь, напечатанные на 3D-принтере, уже демонстрировались на показах мод. Совсем скоро можно будет покупать выкройки и печатать себе платья и джинсы, не выходя из дома. К готовому изделию можно напечатать уникальные декоративные дополнения, чтобы придать индивидуальность фабричному продукту.
От 3D макета к 3D строительству
3D принтер — это удивительное изобретение человечества. С его помощью мы можем создавать трехмерные объекты на основе компьютерных 3D моделей. Первые такие устройства были баснословно дорогими. Поэтому их использовали в основном крупные промышленные, строительные, научные и образовательные организации для своих нужд. С помощью 3D принтеров исследователи и ученные могли создавать модели тех или иных объектов — прототипы. Это помогало выявить сильные или слабые стороны будущего продукта и при необходимости внести изменения еще на этапе проектирования. Данная возможность, как вы понимаете, позволяла экономить время и средства.
Позже появились компактные 3D принтеры для широкой пользовательской аудитории. Такие устройства отличались относительно невысокой стоимостью и возможностью использования в домашних условиях. Кто приобрел подобное устройство для развлечения, а кто-то стал зарабатывать деньги на изготовлении реальных 3D моделей (например, макетов зданий и сооружений). Вы наверняка не раз видели по телевизору или в интернете различные выставки строительных компаний, где они показывают макеты своих зданий. С помощью бытового 3D принтера такой макет теперь может выполнить даже школьник (владеющий 3D редактором).
Внешне выглядит, что технология эта крайне проста. Строители устанавливают на стройплощадке 3D-принтер, напоминающий козловой кран. У принтера в памяти заложен макет здания. На площадке складываются детали. Принтер подключается к источнику питания, а него загружается сырье. И все – процесс пошел.
Сейчас архитекторы используют 3D-технологии для создания отдельных элементов, например лепнины на фасадах, дверных ручек и прочих. Создают несколько вариантов и выбирают самый удачный. Либо же быстро проверяют, насколько этот элемент удобен в использовании. Но это всего лишь прототипы, далее эти конструктивные элементы изготавливают из настоящих строительных материалов – бетона, пластика и так далее.
Одновременно делаются попытки строительства при помощи 3D-печати и полноценных конструкций. Из обычного бетона строят малые архитектурные формы. Так, в Великобритании создали Loughborough University, и он работает не только в исследовательском ключе, но и для рынка. Вполне возможно строить частные дома, используя технологию бетонных экструдеров на полимерный каркас, напечатанный при помощи 3D-принтера. Более того, коммерчески это эффективно.
Принтер, на котором можно “напечатать” целый дом
А теперь попробуйте представить себе 3D принтер, помощью которого можно “напечатать” что-то еще более масштабное. Ну, например, автомобиль, мебель или целый дом. Конечно же, создание полностью функционального автомобиля (как и любой другой сложной техники) методом “слоистой печати” пока еще остается чем-то из области фантастики. А вот 3D принтер для “печати” домов и других полноценных зданий может появиться в арсенале строительных компаний через каких-нибудь пять лет. По крайней мере, в этом уверен профессор факультета инженерии Южно-Калифорнийского Университета — Берох Хошневис.
3D принтеры создают реальные объекты при помощи печати по слоям на основе компьютерной 3D модели. Обычный дом или любое другое здание, по сути, строится тоже по слоям — фундамент, стены, крыша. Так почему бы не построить гигантский 3D принтер для строительства домов. И не просто строительства, очень быстрого возведения готовых полнофункциональных зданий. Вышеупомянутый профессор считает, что подобное станет реальностью в течение пяти лет.
Благодаря использованию современных технологий, в наши дни постройка двухэтажного коттеджа в Штатах занимает по времени от 2 до 6 месяцев. В которых случаях этот срок может быть немного меньше или немного больше. Казалось бы, это отличный показатель. Но даже его можно значительно улучшить при помощи замены ручного труда на машинный. Дело в том, что современное строительство, каким бы совершенным оно ни было, требует значительных затрат ручного труда. Более того — основная часть работы по возведению здания выполняется вручную. Если ручной труд заменить машинным, что предлагает сделать Берох Хошневис, то строительство домов станет менее дорогим и более быстрым.
По мнению профессора, через пять лет 3D принтеры достигнут такого уровня технологического развития, что позволят создавать не только макеты зданий из прессованной бумаги, но и строить настоящие бетонные дома. При этом скорость возведения обычного двухэтажного дома не займет более одного дня. А участие человека в процессе строительства станет минимальным.
Дома из мусора и глины — 30 и 60 кв.м
Итальянская компания WASP напечатала крошечный дом площадью 30 кв. м, себестоимость которого составила всего около $1 000. Постройка получила символичное название Gaia — в честь Геи, древнегреческой богини Земли, поскольку при строительстве использовались только природные материалы.
Инженеры уверены, что экономичную технологию можно использовать для строительства временных убежищ для жертв природных катастроф или беженцев. Дом стал частью проекта «Деревня Шамбала» — первого в мире поселения, где все здания будут напечатанными.
Фото: WASP
Другой проект WASP — футуристичный дом Tecla, созданный в 2021 году вместе с бюро Mario Cucinella Architects. Жилое здание площадью 60 кв. м напечатали за 200 часов.
Фото: dezeen
Принтер компании может использовать в качестве «чернил» как бетон, так и биоразлагаемую смесь из глины, соломы, рисовой шелухи и гидравлической извести. Строительство происходит в два этапа: сначала печатают бетонный каркас стены, а затем принтер заполняет ее внутренний слой глиной. Главное преимущество технологии, которую использует WASP — отсутствие строительного мусора.
Плюсы и минусы применения 3D-принтера в строительстве
Преимущества новой технологии привлекают современных застройщиков. Если есть необходимость в короткие сроки и с минимальными затратами построить комплект объектов, принтер просто необходим. Затраты сокращаются за счёт сокращения рабочих мест, ведь для этого большого 3D принтера требуется всего один оператор и водитель с бетономешалкой.
Еще один плюс: практически исключена вероятность строительного брака. Человеческий фактор исключен, всем процессом руководит компьютерная программа, а оператор по факту лишь включает и выключает устройство
И, наконец, несомненным преимуществом является существенное сокращение сроков строительства. Работы на 3D принтере могут вестись круглосуточно, ему не требуется специальное освещение или выходные дни.
Прежде чем вы озадачитесь покупкой строительной машины, обратите внимание и на её недостатки:
- для строительства невозможно использовать вибробетон, требуются смеси с высокой скоростью схватывания и затвердения;
- пока не разработана четкая методика армирования конструкций;
- нет возможности удалять воздух методом виброобработки, могут образовываться полости с воздухом, что снижает прочность конструкции;
- работать 3D принтером можно только при положительной температуре в сухую погоду.
Есть ограничение проектов по высоте – не более четырех этажей
Что это такое?
Для начала рассмотрим, что собой представляет 3D-принтер. Печать на бумаге с помощью двухмерных технологий достигла вершины своего развития. Рынок переполнен различными устройствами для струйной, лазерной печати. Любой человек может открыть у себя дома студию печати изображений: настолько доступными и компактными стали принтеры. Поэтому человечество решило пойти дальше – совсем недавно появились принтеры, на которых возможна печать трехмерных объектов. Что же такое 3D-принтер?
Это устройство, которое использует метод послойного изготовления вещи. За основу берется виртуальное изображение в трехмерном формате, которое принтер и начинает изготавливать слой за слоем.
На данный момент существуют разные устройства, которые могут использовать различные материалы: от пластика до металла. Благодаря технологии 3D-принтера можно изготавливать трехмерные объекты любого уровня сложности. Даже детали с подвижными частями будут напечатаны в соответствии с задуманным макетом. Это открывает широкий простор для различных экспериментов и значительно упрощает жизнь.
Строительный 3D-принтер: что это
Строительный 3D принтер — специальное оборудование, используемое для так называемого контурного строительства. Эта новая технология, которая дает возможность возводить каркасы домов без участия человека. В будущем планируется применение этой методики и для прокладки инженерных сетей, а также ряда отделочных работ. Но пока что 3D принтеры применяются только для строительства каркасов и ограждающих конструкций.
На самом деле существует несколько вариаций строительных принтеров, которые отличаются друг от друга не только методикой возведения самих стен, но и конструктивными особенностями. Несмотря на их малоизвестность среди рядовых граждан, в строительной сфере эти технологии и оборудование уже много кому знакомы и давно на слуху. Чаще всего можно встретить принтеры портальной конструкции, а также устройства на базе манипулятора. Но проще говоря, это обычный 3D принтер, только больших размеров и использующий для возведения зданий не пластик, а специальные строительные составы.
Стена дома, напечатанного на 3D принтере
С помощью такого оборудования можно возводить различные архитектурные элементы, а также малые архитектурные формы. В некоторых случаях можно полностью напечатать дом прямо на строительной площадке.
Отличительные особенности
Будьте уверены, что современный 3d принтер строит дом очень быстро и за короткий промежуток времени справляется с поставленной задачей. К счастью, это далеко не единственная его особенность. Опытные специалисты утверждают, что представленное оборудование набирает огромную популярность за счет других немаловажных преимуществ, список которых приводится далее:
- невероятная точность выполнения необходимых строительных работ достигается за счет четкого позиционирования головки принтера — это отлаженное оборудование, которое не совершает ошибок, в отличие от обычного человека; это выполняется в том случае, если 3d принтер для строительства домов будет правильно установлен на ровную поверхность;
- денежные затраты, отводимые на механический труд существенно снижаются — такая техника позволяет значительно облегчить ручную работу или полностью ее заменить; при этом, можно не бояться за итоговый результат, потому что он всегда будет на высшем уровне;
- каждый дом построенный 3d принтером отличается по-настоящему крепкой и надежной конструкцией, он не развалится через несколько недель или месяцев после окончания строительного процесса — это означает, что вопрос безопасности людей, которые будут находиться внутри стен этого умного дома, окажется под тщательным контролем;
- строительный 3d принтер для строительства домов настолько популярен в нашей стране, что сейчас активно разрабатываются новые модели с расширенным функциональным рядом;
- 3d принтер печатает дом, используя специальную рабочую массу в виде бетонного или цементного раствора, подача которого выполняется посредством специального экструдера, функционирующего автоматически;
- некоторые модели способны выполнять качественную прокладку нужных коммуникаций — трубопровод, электропроводку или газовую развязку.
Качественная печать дома на 3d принтере осуществляется с выполнением ряда других немаловажных задач, например, возведение фундамента, крепких стен, заделывание проемов. Самое главное — изначально определиться с поставленной задачей и запустить оборудование, которое все сделает автоматически.
Непростое строительное дело постоянно совершенствуется за счет разработки набирающих популярность технологий и методов для эффективной работы. Любой дом на 3d принтере в России ничем не уступает другим сооружениям, которые ранее возводились на основе всем известных строительных технологий. Если вам хочется заполучить дом напечатанный на 3d принтере, то нужно обращаться за помощью к специалистам, потому что нет никакого смысла самостоятельно приобретать такую дорогостоящую технику.
Устройство и принцип работы фена
Когда фен включен, то холодный воздух из помещения засасывается в его трубу с помощью вращающейся крыльчатки, насаженной на вал электродвигателя постоянного тока. Далее воздушный поток проходит через четырехгранный термостойкий каркас из слюды или керамики, на который намотана разогретая спираль из нихрома. Охлаждая спираль, воздушный поток нагревается до температуры 60°C, а в строительном до 600°C, после чего выходит из трубы.
На корпусе фена обычно имеется включатель, совмещенный со ступенчатой установкой режима работы, позволяющий включать фен в режим полной или половинной мощности.
На фотографии показан внешний вид типового движкового переключателя режимов работы.
Для исключения ожога кожи при сушке волос и разрушения корпуса фена при нарушении работы двигателя, на каркасе устанавливается тепловая защита в виде биметаллической пластины.
При нагреве воздуха выше заданной температуры биметаллическая пластина изгибается вверх по стрелке на чертеже и размыкает контакты. Нагревательная спираль обесточивается, и нагрев воздуха прекращается. После остывания биметаллическая пластина возвращается в исходное положение, и контакты вновь замыкаются.
Как видно, принцип работы и устройство фена мало чем отличается от других нагревательных бытовых электроприборов и отремонтировать фен может любой домашний мастер.
Особенности технологии при возведении строительных объектов
Технология 3D печати домов предполагает послойное нанесение специального состава, согласно разработанному чертежу. Обычно используют бетонную смесь на цементной основе. После затвердевания очередного слоя, наносят следующий. В состав вводят добавки для достижения заданных свойств.
Альтернативный способ предусматривает применение сухих порошков, после засыпки которых вводят жидкость для затвердения. Чертежи объектов разрабатывают в компьютерных программах, чтобы заранее просчитать конфигурацию несущих и вспомогательных элементов.
Смесь подают через сопла, перемещаемые по заданной траектории, в зависимости от особенностей и характеристик применяемого оборудования.
Состав загружается в специальную емкость, откуда поступает к форсунке сопла печатающего устройства. Смесь составлена из цемента, пластифицирующей добавки, наполнителя и прочих компонентов. Раствор выдавливают в необходимых количествах через головку устройства, в соответствии с разработанной схемой.
Состав смеси применяемой в данной ситуации отличается от обычного бетона, используемого в традиционном строительстве. Учитывая специфику оборудования, применяют мелкодисперсный раствор. Обычно изготовители оборудования разрабатывают смесь по собственной рецептуре для своих устройств.
Мелкосерийное производство
Профессиональные 3D принтеры постепенно отвоёвывают свои позиции в сфере мелкосерийного производства. Чаще всего данную технологию печати используют для изготовления эксклюзивных изделий, например предметов искусства, фигурок персонажей для участников ролевых интернет-игр, прототипов и концептуальных моделей будущих потребительских товаров или их конструктивных деталей. Такие модели используются как в экспериментальных целях, так и для презентаций новых товаров.
Мелкосерийные модели, напечатанные 3D принтером
Для мелкосерийной 3D печати чаще всего используют системы Dimension, модели Elite и SST 1200ES, а также системы Fortus, модели 400mc и 900 mc.
История 3D-печати
История 3D-печати начинается в 1984 году, когда появилась технология стереолитографии. Эта уникальная технология была запатентована лишь два года спустя Чарльзом Халлом (Charles Hull), тогда же была основана компания 3D System и разработана первая стереолитографическая установка.
Чарльз Халл – родоначальник 3D-печати
В 1985 году Михаил Фейген (Michael Feygin) предложил технологию ламинирования LOM (Lаminаtеd Оbjеct Маnufacturing), в 1986 году Джо Биман (Joe Beaman) и Карл Декард (Carl Decard) разработали метод селективного лазерного спекания (Sеlесtivе Lаsеr Sintеring), а в 1988 году благодаря Скотту Крампу (S. Scott Crump) появилась технология послойного наплавления FDМ (Fusеd Dеpоsition Мodeling). В 1989 году Скотт Крамп основал компанию Stratasys, а в 1991 году выпустил первый в мире FDM-принтер. В конце 80-х годов ХХ века в Китае разработали технологию MEM (Меlted and Еxtruded Мanufacturing), очень похожую на FDM, но названную по-новому в силу патентных ограничений.
В первые годы своего существования технология создания трёхмерных объектов называлась быстрым прототипированием. В 1995 году студенты Массачусетского технологического института предложили ёмкое и запоминающееся название «3D-печать», новый термин довольно быстро прижился среди разработчиков и пользователей.
2000 год был ознаменован появлением технологии PolyJet, а уже в 2005 году был представлен первый 3D-принтер с довольно высоким качеством цветной печати. Дальше процесс появления новых технологий и совершенствования имеющихся шёл в ускоренном темпе.
В 2008 году появились первые RepRap принтеры, способные напечатать себе подобные устройства. Про такие принтеры говорят: «Печатает себя сам». Пока не удалось добиться стопроцентного воспроизводства, в основном RepRap принтеры печатают только пластиковые детали и составляющие.
В 2010 году учёные попытались напечатать на 3D-принтере искусственные кровеносные сосуды. Тогда же появились первые пищевые 3D-принтеры Cornucopia (Рог изобилия) для печати блюд. А всего лишь через год миру был представлен первый шоколадный 3D-принтер.
Пищевой 3D-принтер Cornucopia
В 2012 году был выпущен первый бюджетный 3D-принтер с технологией FDM для домашних пользователей.
Устройство строительного 3D принтера, принцип работы
Стоит отметить, что аддитивные технологии и способы 3D печати бывают разные: лазерное плавление, спекание, стереолитография, наплавления. Следовательно, устройства принтеров тоже различны.
В строительстве используется два типа печати:
- метод экструзии LDM, аналогичный FDM, но без нагрева;
- 3DP или 3D печать сухим порошковым материалом. Данный способ аналогичен SLS (лазерному спеканию), но вместо лазера материал склеивают связующим раствором.
Метод экструзии является самый распространённым. С его помощью можно создавать отдельные строительные элементы, а также полностью возводить здание непосредственно на участке. Второй способ применяется в основном для изготовления декоративных строительных элементов, малых архитектурных форм.
Печать осуществляется специально печатающей головкой, оснащённой шнековым экструдером и бункером для смеси. Специальная мелкозернистая смесь подаётся в бункер вручную или с помощью насоса и послойно выдавливается на участок согласно проектной документации. Таким образом формируются отдельные детали или стены дома.
Существует три основных вида строительного принтера:
- портальный;
- с дельтовидным приводом;
- кранового типа;
- манипулятор.
Портальный строительный принтер
Наиболее перспективный вид строительного 3D принтера. Он напоминает козловой кран, но вместо крюка на тросе у него ферма с печатающей головкой. Этот тип ещё называют XYZ-принтер, поскольку при печати он перемещается по трём взаимно перпендикулярным осям.
В качестве привода обычно используются шаговые двигатели. Такие принтеры способны печатать отдельные детали, малые архитектурные формы, а также небольшие здания целиком, при условии, что они помещаются под аркой устройства.
Простота и надёжность конструкции, а также возможность возведения здания непосредственно на участке являются важными преимуществами данного оборудования. В тоже время, большие габариты и трудоёмкий процесс сборки ограничивают возможность оперативного перемещения.
Трёхосевой (дельтовидный) принтер
Конструкция трёхосевых принтеров похожи на портальную. Основой конструкции также является металлическая ферма. Но она не перемещается на рельсах, а фиксирована. Также отличается крепление печатающей головки. Бункер с экструдером закреплены на рычагах, представляющих собой перевёрнутый штатив с телескопическими «ногами», которые закреплены на направляющих. Таким образом обеспечивается большая подвижность печатающего устройства, но ограничивается площадь печати.
Именно небольшое пространство рабочей зоны дельтавидного 3D принтера и трудоёмкий процесс сборки существенно сужают сферу применения данного оборудования.
Крановый принтер и манипулятор
Иногда печатающее устройство ставят не по периметру, а в середину объекта. Такие принтеры напоминают башенные строительные краны. Их обычно размещают внутри здания, поскольку рабочая зона такого оборудования ограничена вылетом стрелы. Однако они имеют небольшие габариты и вес, что позволяет легко транспортировать. К тому же подготовка такого оборудования к работе происходит достаточно быстро.
Принтеры-манипуляторы используют роботизированную руку для перемещения печатающей головки. Они мобильны, имеют большую гибкость по сравнению с оборудованием кранового типа. Но из-за своей технологичности их цена гораздо выше аналогов.
Стоит отметить, что разработчики не останавливаются на стандартных решениях. Кроме создания непосредственно 3D принтеров, существует оборудование для печати строительных конструкций, являющееся сменным оборудованием. Например, французская компания оснастила кран-паук бетононасосным оборудованием, которое подаёт раствор на закреплённую на конце стрелы печатающую головку. Таким образом базовая машина может выполнять функции крана или возводить бетонные внутренние перегородки.
Этапы 3D печати в строительстве
Применяя аддитивную технологию в строительстве можно не только сделать малые архитектурные формы, такие как урны, скамейки, мосты, фигурки для ландшафтного дизайна, но и построить дом. Причём сделать это можно двумя способами:
- собрать из напечатанных блоков;
- напечатать дом на месте с помощью полевого 3D принтера.
Не зависимо от способа возведения дома по аддитивной технологии первым этапом будет создание проекта будущей постройки. Впрочем, тут ничего не меняется по сравнению с традиционным методом строительства. Разве что модель должна быть трёхмерной, в электронном виде. Это касается изготовления не только домов, но и других конструкций.
Большинство аддитивных принтеров понимают популярные графические форматы – AutoCAD, Компас-3D, ArchiCAD, и умеют переводить их в визуальные слои для формирования карты рабочего процесса. Так что специальную программу для него использовать не придётся.
После подготовки проекта, основным отличие будет то, что после печати строительных элементов их необходимо будет смонтировать на участке. Тогда как возведение 3D одноэтажного дома целиком осуществляется самим принтером. Также, при печати здания на участке, ещё во время работы оборудования можно устанавливать входные тубы для коммуникаций и электропроводки. При необходимости, ставить армирующие элементы.
Следующим этапом является установка оборудования и подготовка расходных материалов, в частности мелкодисперсного раствора. В качестве «чернил» строительный 3D принтер может использовать пескобетон, специально подготовленную смесь на основе цемента или гипса. Рецепт приготовления раствора обычно указан в инструкции к принтеру и/или предоставляется производителем.
После подготовительных работ, оператор запускает печать и строительный 3D принтер начинает выдавливать раствор по заданной траектории. Слой за слоем создаются внешние и внутренние стены здания или отдельного элемента. Оператор только контролирует процесс экструзии, следит за подачей строительной смеси. Прям как в песне: нажми на кнопку – получишь результат….
При возведении одно-двухэтажного коттеджа при помощи аддитивной технологии в большинстве случаев пустоты между внутренней и внешней стеной заполняют изоляционным материалом, утеплителем. В случае сейсмической зоны и необходимости создания более жёсткого каркаса, напечатанные элементы армируются и используются как несъёмная опалубка, а внутреннее пространство заполняется бетоном.
При печати отдельных деталей в цехе, готовому изделию необходимо высохнуть на воздухе или в сушильной камере для набора прочности. Но это зависит от используемого раствора. Напечатанный дом сушится в естественных условиях и готов к отделочным работам практически сразу.
По окончании печати печатающую головку необходимо достать из принтера и тщательно промыть.
Дом-экосистема Curve Appeal — 240 кв. м
Другой пример концептуальной 3D-печати — дом-экосистема Curve Appeal площадью 240 кв. м. Здание принадлежит бюро WATG Urban Architecture Studio. Печать здания завершилась в 2020 году.
Стройка продолжалась три года. Проект здания был создан еще в 2016, и тогда занял первое место на конкурсе The Freeform Home Design Challenge. От организаторов дизайнеры получили $8 тыс. на реализацию концепции.
Фото: WATG
Curve Appeal выполнено из 28 напечатанных панелей. Необычная конструкция поддерживает микроклимат дома: по словам дизайнеров, температура внутри здания не зависит от погоды снаружи.
Заключение
По мнению многих специалистов наибольшее применение строительной печати ожидается в индивидуальном жилищном стро-
ительстве, причем как доступного жилья (дома в 1–2 этажа), так и в дорогом сегменте жилья по за-
казу. Для архитекторов и застройщиков открываются новые возможности разрабатывать и строить новое поколение умных домов по желанию их будущих владельцев, при этом стоимость такого строительства будет значительно ниже традиционного. Чуть позже, по-видимому, произойдет широкое внедрение технологии строительной печати в высотное строительство. Уже сейчас есть технические решения такой печати. С учетом перспектив городского многоэтажного строительства и выгоды использования строительной печати (сокращение времени постройки, уменьшение привлекаемой рабочей силы, снижение себестоимости строительства и др.) этот сектор экономики становится чрезвычайно привлекательным. ■
Литература
- Максимов Н. М. Аддитивные технологии в строительстве: оборудование и материалы// Аддитивные технологии. 2017. № 4. С. 54–62. https://clck.ru/eY5yp
- Максимов Н. М. Аддитивные технологии в строительстве: примеры и перспективы применения// Аддитивные технологии. 2018. № 1. С. 36–42. https://clck.ru/eY5z6
- National Low Income Housing Coalition Report: «The Gap: A Shortage of Affordable Homes March 2021» — NCSHA. https://clck.ru/fbJNr
- Global Status Report 2018 | UNEP — UN Environment Programme. https://clck.ru/eY5zM
- Delbeke, J. & Vis, P. Towards a Climate-Neutral Europe: Curbing the Trend 1–223 (2019) doi:10.4324/9789276082569.
- Human Errors in Construction Can Turn Into Deadly Mistakes. https://reports.nlihc.org/gap/about
- Imagining construction’s digital future | McKinsey. https://clck.ru/eY622
- https://clck.ru/eY5wX
- https://clck.ru/eY5uR
- https://clck.ru/eY5vw
- Additive Manufacturing of Sustainable Construction Materials and Form-finding Structures: A Review on Recent Progresses Junli Liu, and others. https://clck.ru/eY5xS
- Habert G., Miller SA, John VM, et al. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ 2020; 1:559–573.
- Martens P., Mathot M., Bos F., et al. Optimising 3D printed concrete structures using topology optimisation. In: High Tech Concrete: Where Technology and Engineering Meet. Cham: Springer, 2017. Рp. 301–309.
- Panda B., Singh GVPB, Unluer C. et al. Synthesis and characterization of one-part geopolymers for extrusion-based 3D concrete printing. J Clean Prod 2019; 220:610–619.
- Alghamdi H., Nair SAO, Neithalath N. Insights into material design, extrusion rheology, and properties of 3D-printable alkali-activated fly ash-based binders. Mater Des 2019; 167:107634.
- Elahi MMA, Hossain MM, Karim MR, et al. A review on alkali-activated binders: Materials composition and fresh properties of concrete. Constr Build Mater 2020; 260:119788.
Автор Николай Михайлович Максимов
Источник журнал “Аддитивные технологии” № 2-2022