Нормы радиации в помещении

Влияние деятельности человека на радиационный фон планеты Земля

В древние времена деятельность человека не могла повлиять на радиационный фон Земли. При сжигании угля выделяются калий, уран-238 и торий. Благодаря этому археологи и находят древние поселения людей.

Но с развитием промышленности, человек перестал быть безобидным и незаметным для планеты. Он стал угрозой для её существования. Ядерное оружие способно вызвать непоправимые последствия в виде изменения климата. Погибнет всё живое, если человечество не остановится.

Исследование степени заражённости территории возле нефтепромыслов показало, что она возрастает. История знает крупные техногенные катастрофы (Фукусима, Чернобыль), которые нанесли непоправимый урон окружающей среде. И это только начало. Весь ужас трагедии, связанный со стронцием, ещё проявит себя. А на данный момент йод-131 и стронций-90, попадая в организм с едой, вызывают внутреннее облучение.

Эти печально знаменитые аварии коснулись всех – хоть и незаметно, но в этом и есть особое коварство радиации. Какая допустимая норма для человека в мкр/ч, в разных странах трактуется по-разному, в силу множества различных факторов. Но эти показатели могут очень легко измениться. За примерами далеко ходить не надо. Достаточно посмотреть на опыт Республики Беларусь.

Искусственная радиация на земле

Это явление представляет собой превышение естественного природного фона вследствие деятельности человека. История освоения атома начитывает несколько десятилетий. Поскольку эта область промышленности еще до конца не освоена, риск возникновения нештатных ситуаций достаточно велик.

Нормы радиационного фона могут быть превышены по таким причинам:

  1. Проведение испытаний ядерного оружия. Территория, где проводились испытания атомных бомб, насыщена радиоактивными изотопами. Она будет непригодна для жизни еще многие столетия.
  2. Использование атома в мирных целях. Ядерные заряды использовались для изменения русла рек, создания искусственных водоемов и для ликвидации пожаров на газовых месторождениях.
  3. Аварии на объектах атомной энергетики. Во время подобных инцидентов происходит выброс изотопов в атмосферу. В зависимости от масштаба аварии прилегающая территория становится непригодной для жизни на срок от 30 до 10000 лет.
  4. Происшествия во время транспортировки и захоронения ядерного топлива и отходов. В результате зараженный изотопами материал разносится по обширной территории.

Ядерное топливо

В зависимости от степени радиоактивного заражения местности пребывание на ней может быть ограничено по времени или запрещено полностью.

Нормы радиационного фона и их влияние на здоровье человека

ПоказателиВлияние
0,22 микрозиверта в часНормальный уровень радиации, характерный для повседневной жизни людей
1 микрозиверт в часОблучение, которое получает экипаж самолета, летящего из Токио в Нью-Йорк через Северный полюс
2,28 микрозиверта в часТакой уровень радиации допустим для работников атомной промышленности
11,42 микрозиверта в часПри таком уровне радиации серьезно возрастает возможность развития раковых заболеваний
40 микрозивертовПри достижении данного уровня радиационного фона после катастрофы в Чернобыле были эвакуированы люди
114,15 микрозиверта (разовая доза)Уровень радиационного фона, при котором развивается лучевая болезнь, сопровождающаяся тошнотой и понижением концентрации белых телец в крови
570,77 микрозиверта (разовая доза)50 % человек, получивших разовое облучение радиацией такого уровня, умирает в ближайший месяц

Большое значение имеет радиационный фон помещения, в котором человек проводит большую часть своей жизни – дом, квартира, офис.

Безопасными считаются те помещения, в которых содержание частиц тория (тяжелый слаборадиоактивный металл) и радона не превышает 100 Бк на один кубометр. Помимо этого, безопасность радиационного фона можно вычислить по разнице показателей дозы радиации в строении и за его стенами, согласно нормативам, результаты вычислений не должны быть больше 0,3 микрозивертов в час.

Для того, чтобы выполнить подобные измерения можно заказать выезд на замер радиации в квартиру, офис, склад, любое другое помещение.

Зависимость радиационного фона от качества стройматериалов

Главное, что влияет на уровень радиационного фона в зданиях – стройматериалы, использованные в ходе его строительства или ремонта. Для того, чтобы постройка соответствовала радиационным нормам безопасности, специальные службы контролируют качество стройматериалов, производя замеры содержания радионуклидов, фиксируя их удельную эффективную активность.

Нормы допустимой удельной активности радионуклидов зависят от целей, для которых будут использованы стройматериалы.

Класс строительного объектаПредел удельной эффективной активности радионуклидов в строительных материалах
I класс (социально-значимые здания, жилые дома)370 Бк/кг
II класс (производства, дороги, расположенные на территории населенных пунктов)740 Бк/кг
III класс (дорожные полотна, находящиеся за пределами населенных зон и др.)Не больше 1,5 кБк/кг
IV класс4 кБк/кг

Кроме того, допустимый уровень радиации связан с местностью, в которой находится объект, а именно с ее естественным радиоактивным фоном.

Примерные нормы – 0,1-0,3 микрозиверта в час или 10-30 микрозивертов в час.

Для того, чтобы рассчитать точную норму допустимого уровня радиации можно воспользоваться МУ2.6.1.715-98. Эти методические указания содержат информацию о правилах и методах проведения радиационно-гигиенических обследований зданий.

30 микрорентген в час – уровень ионизирующего излучения, который принят за безопасный для человеческого самочувствия показатель. Но и в этом случае следует учитывать тип излучения: альфа, бета, гамма или рентгеновское.

Насколько точны измерения непрофессиональных дозиметров?

Как и любое другое оборудование, непрофессиональные дозиметры допускают получение результатов с определенной степенью погрешности. Для самых точных бытовых дозиметров характерна погрешность 15+6% от мощности дозы микрозивертов в час. При этом вероятность получения измерений с такой погрешностью – 95 %.

Если вас заинтересовал профессиональная проверка квартиры на радиацию, то подробную информацию Вы можете узнать по телефону: +7 (495) 125-10-33. Наши операторы ответят на все ваши вопросы.

Природная радиация не опасна для человека. Вред здоровью наносят радиоактивные источники и объекты, изобретенные людьми. С развитием технологий вопрос – чем измерить радиацию в домашних условиях, становится более актуальным и часто задаваемым. Техногенные катастрофы случаются на планете ежегодно. Человек хочет быть уверенным, что купленный в магазине салат, строительный материал, из которого сооружен дом, не привезены с зараженного участка.

«Цветные дожди» орошают сельхозугодия. Радиация имеет свойство скапливаться в грунте, растениях, воде. Как измерить радиацию дома – предлагаем полезную информацию по выявлению опасных источников в быту, а также рекомендации по выбору приборов для измерения радиации с доказанной эффективностью.

Естественная радиоактивность

Естественная радиация была всегда: до появления человека, и даже нашей планеты. Радиоактивно всё, что нас окружает: почва, вода, растения и животные. В зависимости от региона планеты уровень естественной радиоактивности может колебаться от 5 до 20 микрорентген в час (20 мкР/ч = 0.20 мкЗв/ч). По сложившемуся мнению, такой уровень радиации не опасен для человека и животных, хотя эта точка зрения неоднозначна, так как многие ученые утверждают, что радиация даже в малых дозах приводит к раку и мутациям. Правда, в связи с тем, что повлиять на естественный уровень радиации мы практически не можем, нужно стараться максимально оградить себя от факторов, приводящих к значительному превышению допустимых значений.

Вспышки на солнце — один из источников«естественного» радиационного фонаУровень радиации в салоне самолетана высоте 10 000 м превышает естественный в 10 раз

Откуда же берется естественная радиоактивность? Существует три основных источника:

1. Космическое излучение и солнечная радиация — это источники колоссальной мощности, которые в мгновение ока могут уничтожить и Землю, и всё живое на ней. К счастью, от этого вида радиации у нас есть надёжный защитник — атмосфера. Впрочем, интенсивная человеческая деятельность приводит к появлению озоновых дыр и истончению естественной оболочки, поэтому не следует слишком долго находиться под воздействием прямых солнечных лучей. Интенсивность влияния космического излучения зависит от высоты над уровнем моря и широты. Чем выше Вы над Землей, тем интенсивнее космическое излучение, с каждой 1000 метров сила воздействия удваивается, а на экваторе уровень излучения гораздо сильнее, чем на полюсах.

Ученые отмечают, что именно с проявлением космической радиации связаны частые случаи бесплодия у стюардесс, которые основное рабочее время проводят на высоте более десяти тысяч метров. Впрочем, обычным гражданам, не увлекающимся частыми перелетами, волноваться о космическом излучении не стоит.

Источники попадания радона в дома и квартирыСоотношение естественных источников радиации

2. Излучение земной коры. Помимо космического излучения радиоактивна и сама наша планета. В её поверхности содержится много минералов, хранящих следы радиоактивного прошлого Земли: гранит, глинозём и т.п. Сами по себе они представляют опасность лишь вблизи месторождений, однако человеческая деятельность ведёт к тому, что радиоактивные частицы попадают в наши дома в виде стройматериалов, в атмосферу после сжигания угля, на участок в виде фосфорных удобрений, а затем и к нам на стол в виде продуктов питания. Известно, что в кирпичном или панельном доме уровень радиации может быть в несколько раз выше, чем естественный фон данной местности. Таким образом, хотя здание и может в значительной мере уберечь нас от космического излучения, но естественный фон легко превышается при использовании опасных материалов.

Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним.

Накопление радона в разных комнатах

Радон активно поступает в наши дома с бытовым газом, водопроводной водой (особенно, если её добывают из очень глубоких скважин), или же просто просачивается через микротрещины почвы, накапливаясь в подвалах и на нижних этажах. Снизить содержание радона, в отличие от других источников радиации, очень просто: достаточно регулярно проветривать помещение и концентрация опасного газа уменьшится в несколько раз.

Материалы с повышенной радиоактивностью

При строительстве в советское время все материалы проходили проверку по ГОСТ. Поэтому разговоры о том что «хрущёвские» пятиэтажки имеют радиоактивность, не более чем миф. Основным источником радиации в квартире или любом другом помещении является газ радон.

Он относится к естественным источникам радиации, так как присутствует в земной коре и выделяется в окружающую среду, внося свою долю в общий радиационный фон. Проникая в помещение через фундамент и полы, он накапливается , увеличивая нормальный радиоактивный фон. Поэтому не стоит делать помещения слишком герметичными. Дополнительным источником поступления радона в дом является вода поступающая из артезианских скважин и газ.


Средняя радиоактивность некоторых строительных материалов

Основные строительные материалы: бетон, кирпич и дерево не представляют опасности и являются самыми безвредными. Однако в строительстве и в быте мы используем материалы, выделяющие довольно большое количество радона. К ним относятся:

  • пемза;
  • гранит;
  • туф;
  • графит.

Все материалы залегающие или добытые из земной коры могут иметь повышенный уровень радиации. Поэтому неплохо контролировать её самостоятельно.

Как измерить радиацию в квартире, доме

Для измерения радиации можно воспользоваться дозиметром-радиометром, который имеется в продаже, но Ваши измерения не имеют юридической силы. Если результаты измерений были превышены, то лучше обратиться лабораторию, которая занимается радиологической экспертизой. Специалисты сделают дозиметрический контроль. Если их измерения также дали превышения нормы, то вызывают специалистов МЧС для принятия решения, как поступать в этом случае.

Материалы с повышенной радиоактивностью

Согласно ГОСТ 30108-94 «Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов» проводятся измерения и присваиваются классы материала.

Удельная эффективная активность (Аэфф),

Бк/кг

Класс материалаОбласть применения
До 370IВсе виды строительства
Св. 370 до 740II Строительство дорог в населенных пунктах, в местах перспективной застройки, строительство производственных сооружений
От 740 до 2800IIIСтроительство дорог вне населенных пунктов
Св. 2800IVВопрос об использовании материала решается только по согласованию с Госкомсанэпиднадзором

Чем измерить

Для измерения дозы радиации, которую получил человек на зараженной местности или при контакте с радиоактивным элементом, используется дозиметр.

Приборы делятся на военные, профессиональные и бытовые.

Бытовые приборы имеют компактные размеры, небольшой вес, удобство использования. Они находятся в свободной продаже.

Вот небольшой перечень бюджетных дозиметров (до 10 000 руб):

Название/рейтингОписаниеПлюсыМинусыСтоимость, р
Radex Rd 1706 / 4,8Отечественный прибор для регистрации гамма и бета излучения и среднего фона в помещении или на улице. Питается от батареек.длительный срок автономной работы;

сигнализация о превышении заданного порога;

не внесен в госреестр.9900
EcoLifePro / 4,7Прибор имеет небольшой вес, цветной экран, данные сохраняются в энергонезависимой памятивысокоточный;

интуитивное управление;

есть таймер и термометр;

две единицы измерения

заряда хватает на 3 суток7800
Smart lab FSG-001 (Smart Geiger) / 4,7Компактный прибор работающий в паре со смартфономнесложный в использовании;

не требует отдельного питания;

качественная сборка

Для работы требуется смартфон2900
Pocket Geiger / 4,5для работы требуется подключение к смартфону. Питается от устройства. Управляется через ПО устройствакомпактный;

удобный в эксплуатации;

есть функция оценки погрешности

для работы требуется подключение к ас;

работает только при плюсовых температурах

3990
Соэкс F /4,1Кроме функции дозиметра возможно проверять жесткость воды и нитрат-тестера. Работает от аккумуляторов в течении суток. Потом требуется подзаряжатьмногофункциональность;

обновляемое ПО;

компактный и надежный

малое время автономной работы7500
Родник 3 / 4,7Отечественный прибор дающий точные измерения. Есть встроенные часы, пониженное потребление энергии, ремешок для крепления и магниты чтобы прикрепить к металлической поверхности.компактный и надежный;простой в использовании;

длительный срок использования.

сравнительно с другими высокая погрешность измерений4950

Что делать, если радиация в квартире выше нормы

После проведения радиологической экспертизы и получения заключения от работников МЧС следует обратиться к застройщику с требованием устранить нарушения. Протоколы исследований аккредитованной лаборатории обладают юридической силой.

Самый известный радиационный инцидент в СССР произошел в конце 70-х годов. Был утерян источник ионизирующего излучения ИГИ –Ц-4 в карьере, где добывают щебень. В 1980 году был построен жилой дом, в одной из стен которого оказалась эта капсула. В 1981 году в этом доме скончалась девушка 18 лет, через год ее брат 16 лет, потом их мать. После того, как в квартире поселилась другая семья, в 1987 году умер младший сын, а старший серьезно заболел. Все скончались от лейкоза. После обследования санэпидстанцией радиационного фона был найден источник. Его вырезали из стены и передали в институт ядерных исследований, где по номеру определили виновных.

В чем измеряется радиация

Ионизация органических тканей приводит к нарушению механизмов регенерации клеточных структур и возникновению раковых опухолей.

Рисунок 4. Влияние превышения допустимых доз радиации на организм человека

Поэтому очень важно проводить измерение уровня радиации окружающей среды при подозрении на повышенный уровень загрязнения. Для удобства измерения была придумана единица измерения радиации, выражающая количество поглощенной биологическими тканями энергии – Зиверт. Количество накопительного облучения, которое будет безопасным для человека – это 3.5-4 мЗв в течение одного года (Рисунок 4)

Помимо Зиверта, существуют и другие единицы измерения

Количество накопительного облучения, которое будет безопасным для человека – это 3.5-4 мЗв в течение одного года (Рисунок 4). Помимо Зиверта, существуют и другие единицы измерения.

Каждая из них обладает своими особенностями, необходимыми для как можно более точного установления дозы облучения:

  1. Экспозиционная доза. Используется для измерения концентрации в объемах воздуха позитивных ионов, гамма-лучей и потока рентгеновского излучения. Единица измерения радиации, применяемая для такого типа дозы – это 1 Кулон на 1000 грамм массы. Для сравнения с другой единицей измерения 1 Кл/Г равноценен 3876 Рентгенам.
  2. Поглощенная доза. Этим термином обозначают количество радиационного облучения, поглощенного определенным типом вещества. Бетон, сталь, человеческая плоть – для каждого из этих видов материи применятся свой алгоритм подсчета поглощенной дозы. Применяемой для измерения системной единицей является Грей, не системной – Рад. 1Гр = 100 Рад.
  3. Эквивалентная доза. Данный термин выступает показателем уровня деградации органики под воздействием различных видов энергии радиоактивного воздействия, которая была поглощена. Измерение дозы радиации такого типа в системе СИ осуществляется с помощью Зиверта (Зв). Внесистемным значением выступает Бэр (бэр), и его соотношение к Зиверту = 1:100.
  4. Эффективная доза. По причине различия клеточного состава человеческие органы обладают индивидуальным уровнем чувствительности к радиации. Для удобства определения дозы, способной вывести тот или иной орган из строя добавили этот определитель. Роль единицы измерения вновь играет Зиверт (Зв).
  5. Мощность эквивалентной дозы. Поскольку распределение лучей во времени неравномерно, а сам источник не излучает волны со стабильным промежутком, был введен показатель поглощенной дозы за единицу времени. Он называется мощностью дозы и выражается в любой удобной единице измерения радиоактивного воздействия на один час времени. Мера измерения радиации – Рентген (Р), Зиверт (Зв) или же Грей (Г).

Последствия радиоактивного заражения

Уровень радиации измеряется в количестве изотопов, полученных за единицу времени. Мощность излучения определяется в рентгенах в час, полученная доза вычисляется суммированием всех показателей за год. Эта составляющая измеряется в греях (Гр).

В зависимости от объема поглощенных организмом изотопов человек может получить лучевую болезнь:

  1. I степень. Заболевание не представляет опасности для человека при условии его эвакуации из зараженной зоны. Оно проявляется в виде слабости, головной боли, нарушении сна и аппетита. При получении дозы до 2 Гр выздоровление может наступить уже через полтора-два месяца.
  2. II степень. В случае получения дозы до 4 Гр наступает поражение средней тяжести. Больной испытывает острые боли, у него нарушается деятельность внутренних органов и центральной нервной системы. Внешне болезнь проявляется выпадением волос, зубов и образованием язв. Даже квалифицированное лечение не дает полного выздоровления.
  3. III степень. Доза 4-6 Гр вызывает необратимые процессы в организме человека. Болезнь тяжелой формы приводит к отказу внутренних органов и некрозу мягких тканей. Как правило, при сопутствующей потере иммунитета заболевание приводит к летальному исходу.
  4. IV степень. Тяжелая форма развивается при получении больным более 6 Гр. Описать симптомы, которые испытывают пациенты, не представляется возможным, так как их смерть наступала в считанные часы после облучения. Летальному исходу предшествовало полное нарушение структуры мягких тканей, остановка сердца и прекращение дыхания.

Лучевой травмой считается получение человеком дозы, величина которой составляет менее 1 Гр.

Виды доз радиации и что такое мощность эквивалентной дозы

Понятие дозы введено для оценки степени воздействия ионизационного  облучения на различные объекты. Чтобы определить интенсивность допустимых доз облучения ввели понятие мощности дозы.

  • Экспозиционная доза. Количество положительных ионов рентгеновских и гамма лучей в определённом объёме воздухе, принято называть экспозиционной дозой. Системной единицей измерений является кулон деленный на килограмм (Кл/Г), а не системной единицей  Рентген (Р). 1 Кл/Г = 3876 Р.
  • Поглощённая доза. Количество полученной энергии радиоактивного излучения на единицу массы облучаемого вещества называют поглощённой дозой. Системной единицей измерения является в Грей (Гр), а не системной Рад. 1 Гр = 100 рад.
  • Эквивалентная доза. Понятие эквивалентной дозы показывает поглощённую дозу ионизирующего излучения, скорректированную коэффициентом относительной биологической эффективности различных видов радиоактивных излучений. Системно единицей измерения является Зиверт (Зв), а не системной Бэр (бэр). 1 Зв = 100 бэр.
  • Эффективная доза. Различные ткани организма имеют разную чувствительность к облучению. Поэтому для расчёта эффективной дозы добавили коэффициент радиационной опасности. Измеряется также как и эквивалентная доза в Зивертах (Зв).
  • Мощность эквивалентной дозы. Доза облучения, полученная организмом в определённый отрезок времени (например, в течение часа), называется мощностью дозы. Мощность рассчитывается как отношение дозы ко времени воздействия и измеряется в Рентген в час, Зиверт в час и Грей в час. Бытовые дозиметры обычно измеряют мощность эквивалентной дозы (микроЗиверт в час) или мощность экспозиционной дозы (микроРентген в час). Соотношение запомнить несложно — один Зиверт это сто Рентген.

Допустимая доза облучения или безопасная мощность дозы

Допустимые дозы облучения (уровень мощности естественного фона) от 0,05 мкЗв/час до 0,5 мкЗв/час безвредны. Но при постоянном попадании в организм человека радона возрастает риск различных заболеваний, в том числе раком. Поэтому помещения необходимо проветривать. При строительстве дома или ремонте квартиры нужно проверять применяемые стройматериалы бытовым дозиметром или индикатором радиоактивности.

Человеческая деятельность увеличивает естественную радиоактивность природы. И это не только ядерное оружие или атомная промышленность. Обычное сжигание газа, нефти или каменного угля изменяет радиационный фон. Допустимые дозы облучения значительно превышены в районах нефтескважин. На грунте около скважин и на бурильном оборудовании откладываются небезопасные соли тория 232, радия 226 и калия 40. Поэтому отработанные трубы считаются радиоактивными отходами и должны утилизироваться специальным образом.

Смертельная доза облучения

Опасность получения смертельной дозы облучения в основном появляется при техногенных авариях или при неправильном хранении радиоактивных отходов. Смертельная доза радиации начинается с 6-7 Зв в час и более. Но даже в небольшой степени, но постоянно повышенный радиационный фон может вызвать мутацию клеток. Риск возникновения онкологических заболеваний можно снизить, используя бытовые дозиметры. Радионуклиды имеют свойство накапливаться. Поэтому следует регулярно проверять окружающий радиационный фон, строительные материалы, природные источники воды.

Действующие нормы радиационного фона

Радиация в повседневной жизни

Нормы радиации являются усредненными, полученными по результатам клинических исследований больных, получивших дозы радиации различного уровня. Полученные суммарные дозы люди могут получать за разные промежутки времени. Чем больше сила излучения, тем опаснее могут быть последствия и сложнее лечение. Поэтому и определение, что такое нормальный радиационный фон, устанавливается на законодательном уровне и является величиной для регламентирования условий проживания или труда на предприятии.

Правила радиационной безопасности касаются таких категорий граждан:

  • военнослужащие, проходящие службу на атомных подводных лодках и надводных кораблях;
  • персонал АЭС;
  • люди, проживающие на территории с высоким радиационным фоном;
  • профессиональные спасатели и работники аварийных бригад, работающие на объектах атомной энергетики;
  • работники медицины, которые имеют дело с приборами, содержащими радиоактивные элементы;
  • ученые, работающие с радиоактивным материалом.

Предельной границей радиации считается значение, равное 50 микрорентген в час. Однако, если в течение года, получая через равные промежутки времени небольшие дозы излучения, человек получит суммарно 1 рентген, то это будет для него практически безопасно. Радиация постепенно из организма выводится. Действующие сегодня нормы радиоактивной безопасности определяют предельную дозу полученного за жизнь облучения в пределах 60-70 рентген.

Если брать уровень воздействия радиационного фона и гамма-излучения в микрозивертах в час, то допустимой границей безопасности считается:

  • просмотр телевизора 3 часа в день на протяжении года (0,005 мЗв);
  • длительный перелет на самолете (0,01 мЗв);
  • нахождение на открытой местности в солнечную погоду (1 мЗв);
  • работа на атомных электростанциях (0,05 мЗв).

Опасной считается доза 11 мкЗв в час. Она повышает риск онкологических заболеваний.

Автор статьи: Беспалова Ирина Леонидовна

Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.
Беспалова Ирина Леонидовна опубликовала статей: 515

Опасные дозы облучения

При 1 зиверте человек испытывает негативные симптомы. При трех – уже лысеет и получает различные расстройства, вплоть до полового бессилия. На фоне в 3,5–5 Зв умирает половина больных, причем за короткий срок – 25–30 дней. Более 500 Зв – неминуемая смерть за 2 недели, почти со 100 % вероятностью. Сколько максимально нужно для летального исхода – значение индивидуальное. СанПиН считает нормой 0,25–0,4 мкЗв/час в жилом помещении.


Нормативы радиационной безопасности

Норма радиации участка под застройку – не более 0,3 мкЗв/час. Иначе в квартирах, построенных на нем, можно будет за несколько месяцев выбрать годовую норму.

Бета-распад.

Бета-распад наблюдается как у тяжелых, так и у легких ядер, например, у трития. Эти легкие частицы (быстрые электроны) обладают более высокой проникающей способностью. Так, в воздухе b-частицы могут пролететь несколько десятков сантиметров, в жидких и твердых веществах – от долей миллиметра до примерно 1 см. В отличие от a-частиц, энергетический спектр b-лучей не дискретный. Энергия вылетающих из ядра электронов может меняться почти от нуля до некоторого максимального значения, характерного для данного радионуклида. Обычно средняя энергия b-частиц намного меньше, чем у a-частиц; например, энергия b-излучения 228Ra составляет 0,04 МэВ. Но бывают и исключения; так b-излучение короткоживущего нуклида 11Ве несет энергию 11,5 МэВ. Долго было неясно, каким образом из одинаковых атомов одного и того же элемента вылетают частицы с разной скоростью. Когда же стало известно понятно строение атома и атомного ядра, появилась новая загадка: откуда вообще берутся вылетающие из ядра b-частицы – ведь в ядре никаких электронов нет. После того как в 1932 английский физик Джеймс Чедвиком открыл нейтрон, отечественные физики Дмитрий Дмитриевич Иваненко (1904–1994) и Игорь Евгеньевич Тамм и независимо немецкий физик Вернер Гейзенберг предположили, что атомные ядра состоят из протонов и нейтронов. В таком случае b-частицы должны образоваться в результате внутриядерного процесса превращения нейтрона в протон и электрон: n p + e. Масса нейтрона немного превышает суммарную массу протона и электрона, избыток массы, в соответствии с формулой Эйнштейна E = mc2, дает кинетическую энергию вылетающего из ядра электрона, поэтому b-распад наблюдается, в основном, у ядер с избыточным числом нейтронов. Например, нуклид 226Ra – a-излучатель, а все более тяжелые изотопы радия (227Ra, 228Ra, 229Ra и 230Ra) – b-излучатели.

Оставалось выяснить, почему b-частицы, в отличие от a-частиц, имеют сплошной спектр энергии, это означало, что одни из них обладают очень малой энергией, а другие – очень большой (и при этом движутся со скоростью, близкую к скорости света). Более того, суммарная энергия всех этих электронов (она была измерена с помощью калориметра) оказалась меньше, чем разность энергии исходного ядра и продукта его распада. Снова физики с толкнулись с «нарушением» закона сохранения энергии: часть энергии исходного ядра непонятно куда исчезала. Незыблемый физический закон «спас» в 1931 швейцарский физик Вольфганг Паули, который предположил, что при b-распаде из ядра вылетают две частицы: электрон и гипотетическая нейтральная частица – нейтрино с почти нулевой массой, которая и уносит избыток энергии. Непрерывный спектр b-излучения объясняется распределением энергии между электронами и этой частицей. Нейтрино (как потом оказалось, при b-распаде образуется так называемое электронное антинейтрино ) очень слабо взаимодействует с веществом (например, легко пронзает по диаметру земной шар и даже огромную звезду) и потому долго не обнаруживалось – экспериментально свободные нейтрино были зарегистрированы только в 1956 г. Таким образом, уточненная схема бета-распада такова: n p + . Количественную теорию b-распада на основе представлений Паули о нейтрино разработал в 1933 итальянский физик Энрико Ферми, он же предложил название нейтрино (по-итальянски «нейтрончик»).

Превращение нейтрона в протон при b-распаде практически не изменяет массу нуклида, но увеличивает заряд ядра на единицу. Следовательно, образуется новый элемент, смещенный в периодической таблице на одну клетку вправо, например: , , и т.д. (одновременно из ядра вылетают электрон и антинейтрино).

Что такое радиация

Радиация — это вид излучения заряженными частицами. Такое излучение, воздействуя на окружающие предметы, ионизирует вещество. В случае с человеком она не только ионизирует клетки, но и разрушает их или вызывает раковые заболевания.

Большинство элементов таблицы Менделеева инертны и безвредны, но некоторая часть имеет нестабильное состояние. Не вдаваясь в подробности описать её, можно так. Атомы некоторых веществ из-за непрочных внутренних связей распадаются. Это распад сопровождается выбросом альфа, бета-частиц и гамма-излучением.

Такой выброс сопровождается высвобождением энергии с различной проникающей способностью и оказывающем разное воздействие на ткани организма.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий